您当前的位置:  主页 > 新闻中心 >
  • 这项工作由 Hou 和 Wang 完成,受到了以下观察的启发。在一个 CNN 的卷积层的堆栈内,所有的通道都是由之前的层生成的,并会在下一层中得到平等的对待。这就带来了一个想法:这样的「分布」可能不是最优的,因为事实可能证明某些特征比其它特征更有用。当特征仍然可追溯时,对于更高层(更浅)来说尤其如此。Zhang et al. 2016 更进一步表明了这一点,他们表明,对于每张输入图像,更高层中仅有少量通道被激活,同时其它通道中的神经元响应接近于零。
  • 在计算 TF-IDF 时需要注意几点。在总结文本时,难点是寻找显著突出的 token。直观地看,人们可能会认为最常出现的 token 最重要。但是,很多文档中最常出现的词往往不能提供较多重要信息,比如 the、to、with、have(而不只是我们关注的词)。显著的 token 往往在多个不同文档中有较低的数量,而在某个文档中数量较大。TF-IDF 分数可以使用下列公式进行计算。
  • 这是连接一个词节点与另一个词节点的边。连接两个词节点的边的权重使用逐点互信息(PMI)计算。PMI 度量非常类似信息论中的互信息,可以很好地直观理解。
  • 买家改变了,竞争环境改变了,市场最终变得比预期的要小,商业化也比预期的要复杂,“插入”本身就很困难。
  • 这是连接词节点和文档节点的边。词-文档边的权重是词-文档的词频-逆文档频率(TF-IDF)。词频是指词在文档中出现的次数,逆文档频率(IDF)是指包含该词的文档数量的对数尺度的逆向分数。
电话
www.cleader.com.cn